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The present theory provides an asymptotic-expansion method for inviscid com- 
pressible flows with shock in arbitrary two-dimensional slender nozzles. The flow in 
front of the shock is assumed to be potential, whereas the flow behind the shock is 
considered to be rotational owing to the presence of the shock. A parameter that 
measures the slenderness of the nozzle is used as the expansion quantity. It is found 
that, except for the region immediately behind the shock, the same coordinate scale 
can be used for the flows both in front of and further downstream behind the shock. 
The flows for the regions thus obtained show that all the streamlines are approxi- 
mately affinely similar to the nozzle wall, and the leading term of the transverse 
pressure gradient is determined by the local wall shape. For the flow region 
immediately behind the shock, however, the transverse pressure gradient just behind 
the shock is determined by the shock conditions rather than by the local wall shape, 
and a solution is found for that region which transforms the transverse pressure 
gradient from that determined by the shock conditions to that determined by the 
local wall shape. The well-known flow singularity at the intersection of the wall and 
the shock is involved in the solution. Meanwhile, a critical shock location at which 
the flow has no singularity is derived. A numerical example shows also that the 
inviscid flow may separate from the wall, owing to the different entropy increase 
across the shock for different streamlines. The predicted separation point, however, 
is only of qualitative value, since our theory does not account for reverse flows. 

1. Introduction 
Much research has been devoted to analytical solutions of the compressible 

nozzle-flow problem, and in the present paper we are mainly concerned with the 
presence of the shock in the flow. It is believed that such a solution is valuable both 
for basic understanding of the flow phenomena and as a check of various numerical 
methods based upon discretization. In Lin & Shen (1981) a simple example of 
transonic flow with shock in two-dimensional slender nozzles was given. The entropy 
increase across the shock was neglected, and the small-perturbation potential 
equation for transonic flow was used for both the flows before and behind the shock. 
A well-known exact solution of small perturbation was used for the flow before the 
shock, and the shock shape was assumed to be a parabola somewhere in the nozzle. 
By using a series-expansion method, the flow field, as well as the nozzle wall, behind 
the shock was evaluated to  fit the shock conditions. The curvature of the nozzle wall 
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at the shock point thus obtained is discontinuous. This result is a manifestation of 
the well-known fact that  continuous curvature of the wall a t  a shock point generally 
demands singular local behaviour of the flow and the shock shape. 

For slender smooth nozzles of hyperbolic shape a complete treatment using the 
asymptotic-expansion technique and including numerical examples was subsequently 
presented in Lin & Shen (1982). Though independently worked out, both the basic 
idea of an inner region immediately behind the shock and much of the analytical 
development were found to  be closely parallel to the earlier work of Messiter & 
Adamson (1975). I n  fact, extensions of the same idea had appeared already in the 
treatment of unsteady transonic channel flows with shock (Richey & Adamson 1976; 
Chan & Adamson 1978; Adamson, Messiter & Liou 1978). Nevertheless, Lin & Shen 
(1982) does contain important additional results, such as the alternative formulations 
of velocity potential and stream function, and one more higher-order term in the 
expansion expressions for each dependent variable. The entropy rise thus makes its 
appearance. Of even more practical interest is that  the theory is carried through to 
provide numerical examples, which quantitatively compare the predictions of the 
alternative formulations, in both two-dimensional and axisymmetric cases, as well 
as with the results from a state-of-the-art finite-difference computation. 

The present research is an  extension of the theories of Messiter & Adamson (1975) 
and Lin & Shen (1982), which were limited to  the transonic range, to include flows 
from low subsonic t b  supersonic. The inviscid compressible flow with shock in slender 
two-dimensional nozzles of arbitrary shape is again analysed using the asymptotic- 
expansion method. The leading terms of the expansions are assumed to be the local 
one-dimensional solution, instead of the sonic state as in the earlier papers. As the 
shock strength is not necessarily weak, the vorticity behind the shock can no longer 
be neglected, and the inviscid Euler equations should be used in this region. The 
slenderness of the nozzles implies that  the variation of any flow parameter along the 
axial direction is, generally, smaller in order than that along the transverse direction. 
As in boundary-layer theory, the governing equations, which are elliptic in the 
subsonic region and hyperbolic in the supersonic region, are thus reduced to  parabolic 
type, and the successive expansion terms are easy to solve. All the streamlines are 
found to  be approximately affinely similar in shape with the nozzle wall (i.e. each 
streamline is approximately given by the locus of points a t  the same transverse 
coordinate when normalized by the local gap width), and the variation of the 
transverse pressure gradient is determined by the local wall geometry (gap width, 
slope and curvature). These features are quantitatively discussed in $3. For con- 
venience, we call this kind of flow the smoothflow in the present paper. I n  the regions in 
front of the shock and further downstream behind the shock, the flow is usually 
smooth. Immediately behind the shock, however, the transverse pressure gradient 
is determined by the shock conditions instead. Therefore immediately behind the 
shock there is usually a short transition region in which the transverse pressure 
gradient changes from that determined by the shock conditions to that determined 
by the local wall shape. This short transition region disappears only if the two 
transverse pressure gradients coincide. We shall discuss this condition in $4. 

Thus the flow field is divided into three parts: the smooth region in front of the 
shock, the short transition region behind the shock and the smooth flow region 
further downstream behind the shock. In  the following the latter two are referred 
to respectively as the inner region and the outer region behind the shock. 

Computation has been carried out for a hyperbolic nozzle as the shock is made to 
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direction t. 
h = - 6f (x )  f l  

FIGURE 1. Coordinates and geometry of the nozzle. 

occur further and further downstream and become stronger. A systematic evolution 
of the shock shape is revealed. In  a separate numerical example, evidence is also found 
for the phenomenon of shock-induced inviscid separation. Imagine a rather strong 
shock occurring somewhere across the nozzle section with larger entropy increase near 
the wall than that near the axis. In this case the total mechanical energy near the 
wall is lower than that near the axis. If the flow behind the shock is further 
decelerated, the flow near the wall may lose all its kinetic energy while the flow near 
the axis still moves forward. Local reverse flow may develop. Not unlike a viscous 
boundary layer, under an adverse pressure gradient the inviscid flow would separate 
from the nozzle wall. Systematic analysis of this phenomenon has not been 
attempted. 

2. Coordinate system 
Consider two-dimensional compressible flow in a slender symmetric converging- 

diverging nozzle of arbitrary shape. The Cartesian coordinate system is shown in 
figure 1. The x-axis is along the line of symmetry and pointing downstream, the y-axis 
is in the transverse direction, and the origin 0 is placed at the throat section. The 
equation of the nozzle wall is assumed to be 

h = +Sf(x), (1)  

where h is the half-height of the nozzle, f(x) is an arbitrary smooth function of x, and 
S( Q 1) is a slenderness parameter. We can take f(0) = 1 at the throat without loss 
of generality. It is noted that (1) is essentially different from the slender-nozzle wall 
equation in the earlier papers of Messiter & Adamson (1975) and Lin 87, Shen (1982), 
where the form of h = f (1 + Sf(s)) was used. Therefore, in the latter case, the nozzle 
becomes a channel of constant cross-section as S+O, so that the leading term of the 
asymptotic expansion was taken to be the uniform state, i.e. the sonic state in the 
previous papers, and only the transonic flow was considered there. In the present 
paper, however, (1) shows that the relative variation of the cross-section remains 
unchanged as S+O so as to include the wider flow range from low subsonic to 
supersonic. 

A curvilinear coordinate system (6,s) defined by 

x = E,  y = Sf(4 7 (2) 
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is next taken, with 7 = 0 corresponding to the nozzle axis and 7 = 
walls. In tensor notation the coordinates ( 6 , ~ )  can be expressed as 
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1 to the nozzle 

$ =  X I ,  7 = 2 2 ,  (3) 

and the covariant components of the metric tensor defined by 

Note that the summation convention is applied in (4) and also later in the present 
paper. The contravariant components of the metric tensor can also be evaluated by 

where 9 = 911922-9:2. 

Substituting (5) into (7) and (6), we have 

g = 62f2, 

and (9) 

It is known that any vector A can be determined by its covariant components 

(10) 

( A l ,  A.,) or its contravariant components (A1 ,  A 2 )  as 

A = A k e ,  = A,ek, 

where 
ax ay . ax* . axk . 

e, = @i+- ek = - i + - j ,  
axkJj ax ay 

and i and j are the unit vectors of Cartesian coordinates. Then the covariant 
differentiations of the contravariant components can be expressed as 

3. Solutions in front of the shock and further downstream of the shock 
We shall consider inviscid flow of a perfect gas with constant specific heats. With 

a’, %f2, p and p denoting the contravariant velocity components, density and 
pressure respectively, the governing equations for the flow are the equation of 
continuity 

( P W , l + ( P Q Z ) , Z  = 0, (13) 

the x-momentum equation 

pQ 1 Q + p w  Q ‘ z  = - gllp, 1 - glZp, 2, 

the y-momentum equation 
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and the equation of constant entropy along the streamlines 

where y is the ratio of specific heats of the gas. All the velocity components, densities 
and pressures are non-dimensionalized with respect to the critical speed V,, critical 
density before the shock p* and p* VZ, respectively in the present paper. 

It is found that the same coordinate scale introduced in $2 can be used for the 
solutions both in front of the shock and further downstream of the shock (i.e. outer 
solution behind the shock), except for a short region, the inner region, immediately 
behind the shock. The necessary condition of introducing an inner region behind the 
shock will be discussed in $4. 

The asymptotic expansions of the dependent variables for the flows both in front 
of the shock and further downstream of the shock are assumed to be 

where the leading terms O ( P )  correspond to the one-dimensional solution. As it  is 
easy to show that el and e, in (11) are the vectors parallel to the corresponding 
coordinates 7 = const and 5 = const, the tangency boundary conditions at the 
nozzle walls are obviously 

4 Y 2 = O  o n 7 = & 1 .  (18) 

Substitution of the assumed form (17) into the differential equations (13)-( 16) leads 
to a sequence of sets of equations for the expansion functions in (17). It is found that 
only even-order terms of 6 are necessary for the solution in front of the shock. For 
the outer solution behind the shock, however, odd-order terms of S beginning with 
terms O(a3) as in (17) are also necessary for the matching with the inner solution 
behind the shock discussed later. 

The zeroth-order governing equations are 

(fro uo)' = 0, ro uo u; = -p i ,  e)' = 0, 

and their general solutions are 

[( Y-1) Y-1 u : ] l ' ( ~ - l )  = 11 
f' 

uo c2+- -- 
2c1 2c, 

0 ,  
1 p =-yY  Cl To = - 

fuo' O Y 
where C,  and C,  are constants yet to be determined. 

The governing equations of order S2 are found to be 

If(rou2+uor2)l,s+fr,v,,, = 0 ,  

f' 
ro uo u2, E+U;(rO u2 + uo r2) = -P2, s+- 7P2,,' f 
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f” - 7 ~ o ~ : = - f 2 P , , v + - 7 P ; ,  1 f‘ 
f f 

Substituting p i  of (19) into (23) and integration with respect to  7 give 

P ,  = P,,(6)-a(uOf’)’T2.  (25) 

where p, , ( [ )  is an arbitrary function of 
with respect to 6 gives 

yet to be determined. Integration of (24) 

t-2 = p+gz(7)], (26) 
Y Po 

where g2(7)is an arbitrary function of 7. Then substitution of (25) and (26) into (22) 
and integration with respect to  6 give 

where gl(y) is also an arbitrary function of 7. Finally, substitution of (25)-(27) into 
(21) and integration with respect to  7 gives 

where M2 = ro u:/ypo, and v, = 0 on 7 = 0 has been used to  determine the integration 
constant. 

Applying the boundary conditions (18) to (28) yields 

[ (’ -M2)fp20]’ = (L)’ Iol g1(7) dv-% 1 [f’, - (1  - M 2 )  - f ( u o f ) ’ ] ’ ,  
UO U 2  UO 

or, after integration, 

This is the equation for evaluating p, , ( [ ) ,  with C, being the integration constant yet 
to be determined. 

Now the expansion functions up to O ( P )  in (17) have been obtained in (20) and 
(25)-(28), with the constants C,, C,, C, and the functions gl(y), g2(T)  yet to  be 
determined. Those constants and functions have to  be determined in principle by the 
upstream conditions. 

Obviously, the forms of the solutions are the same for the flows both in front of 
the shock and further downstream of the shock. To distinguish the solutions for the 
above two regions, we shall add superscript o to  those expansion functions 
corresponding to  the outer solution behind the shock, e.g. ui, ui, .... 

Let us now determine those constants and functions for the flow field in front of 
the shock. The flow there is assumed to be potential, so that the entropy and the 
enthalpy are uniform in the field, i.e. 
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where Q is the magnitude of velocity and can be evaluated by 

Q2 = g t j @ ‘ @ j .  

It can be shown that, up to order S2, (30) is equivalent to 

Equations (33a) and (34a) show that C, = 1 and C, = 1 in (20). It is also easy to 
show that (33b) and (34b) correspond to g2(r] )  = 0 and gl(r]) = 0 respectively. Finally, 
we have f’ = 0 and M = 1 at the throat section. Thus (29) shows that C, = 0. 

So far we have determined all the constants and functions involved in the solution 
for the flow in front of the shock. For the outer solution behind the shock, those 
constants and functions are related to the inner solution behind the shock, and will 
be discussed later. The expansion terms O(S3) in (17) for the outer solution behind 
the shock are given in Appendix A. 

Since@’= O ( l ) ,  @ 2  = 0(a2) by (17) and le,l = 0(1), le21 = O(S) by ( l l ) ,  it means 
that r ]  = const are approximately streamlines of the flow, and the velocity components 
normal to r ]  = const are only O(S3). We cull this kind of pow the smooth flow in the 
present paper. In  this case, the transverse pressure gradient is given by (17) and (25) 
as 

aP - - - P ( U o  f ’)/ r] .  
ar] 

(35) 

Alternatively, we can derive (35) by a more intuitive physical argument. Consider 
now the y-momentum equation. If r] = const are approximately streamlines, we have 

y-velocity component - uo Sf’r]. 

Thus the y-momentum equation reads 

aP - - -rouo(uo f’)’Sr]. 
a Y  

Keeping in mind that rouo f = 1 for one-dimensional flow and y = 8f7, we again 
obtain (35). 

4. Condition for the disappearance of an inner solution immediately 
behind the shock 

It is well known that, in the case of a weak shock in transonic flow, the flow is 
singular behind the shock a t  any point on the wall where the curvature of the wall 
is continuous and non-zero (see e.g. Ferrari & Tricomi 1968, p. 358), and, for a 
slender-nozzle flow, an inner solution is needed for the narrow region immediately 
behind the shock (see e.g. Messiter & Adamson 1975) iff” $: 0 on the shock position. 
The extension to the case with a rather strong shock in the present paper will show 
that the same conclusion holds; except for a particular value of one-dimensional 
velocity just ahead of the shock, with which an inner solution can disappear even 
for f“ =I= 0. 
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X 

FIQURE 2. Local coordinates at the intersection of the shock and the wall. 

Consider a region in the vicinity of the intersection of a shock and wall as shown 
in figure 2. (2, y) are taken temporarily as the local Cartesian coordinates, with the 
origin at the intersection point, the x-axis tangential to the wall and pointing 
downstream, and the y-axis perpendicular to it. The local radius of curvature at  the 
origin is assumed to be R( -+ co, i.e. f” + 0). According to the shock condition of 
equality of the tangential velocity components, the shock must be perpendicular to 
the wall. It is well known that the curvature of the shock, as well as the gradient 
of the velocity component, is usually logarithmically infinite. However, we can derive 
a condition at  which the singular behaviour of the flow does not exist. 

Let u*, p* and p* denote the normal velocity component, density and pressure, 
with subscripts I and I1 indicating values immediately upstream and downstream 
of the shock respectively. The difference between the normal velocity component and 
the magnitude of velocity in the vicinity of the origin is of higher order and can be 
neglected in the following analysis. 

On the one hand, the normal shock conditions require that 

The flow in front of the shock is considered to be potential so that u: is a function 
of pf satisfying dufldp: = - l / p :  uf. Then differentiation of (37) with respect top: 
gives 

u*2 -Y + 3  
I Y + 1  

1 - -  Y - 1  .I*2 

Y + l  

Equation (38) shows that the sign of dp:I/dp: required by the shock conditions 
depends on the value of u:. If u: is near-transonic, i.e. u: - 1, then dp&/dpI* < 0, 
which means that the transverse pressure gradients must have opposite signs 
immediately on both sides of the shock. If u: > [(y+ 3)/(y + l ) ] ; ,  however, (38) shows 
that the transverse pressure gradients remain of the same sign on both sides of the 
shock. 

On the other hand, let us consider the y-momentum equation 
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at the origin on both sides of the shock, where u and v are the velocity components 
along the x- and y-directions. In  front of the shock we have 

as u = u:, &/ax = -u:/R and v = 0. Behind the shock, 
there, we similarly have 

the flow is not singular 

aP:I 
R a Y  . 

* u*z 
PI1 I1 - --- 

Combining (40) and (41) yields 

along the shock. Obviously, the right-hand sides of (38) and (42) should be the same, 
and we can thus obtain the condition 

under which the flow is not singular. For y = 1.4 we have 

corresponding to the Mach number MZ,, = 1.6619. If the condition (43) is not 
satisfied, the flow must be singular. In  this case, wII+O and av,,/ay+ao as y+O such 
that the term vII awII/ay has a finite contribution to the y-momentum equation (39), 
and (41) is then modified such that dpF1/dpf determined by (40) and (41) should be 
equal to that determined by (38). 

For slender-nozzle flows an analysis based on the asymptotic expansions given in 
$3 also shows that, when the wall curvature is non-zero, the shock conditions can 
be fulfilled by the proper choice of the constants C,, C,, C, in (20), (29) and the 
functions gl (q ) ,  g2(q)  in (26), (27) for the outer solution behind the shock without 
introducing aninner solutionimmediately behind the shock only ifthe one-dimensional 
velocity immediately in front of the shock uo*, instead of u:, satisfies (43). 

5. Inner solution behind the shock 
Section 4 has shown that an inner solution immediately downstream of the shock 

is necessary, if the wall curvature is non-zero and the one-dimensional velocity just 
in front of the shock is not equal to the value given by (44). 

The shock shape is now assumed to be 

where subscript s denotes 'shock', CS, is a constant determining the shock position 
in the nozzle and is obviously dependent on the downstream conditions, and subscript 
0 denotes the value of f(f) and its derivatives at 5 = go. The first two terms on the 
right-hand side of (45) in fact represent the one-dimensional shock shape, since 
it has been shown in $3 that q = const are approximately streamlines for the flow 
in front of the shock, and (exact to order 8,) the first two terms on the right-hand 
side of (45) are the equation of a parabola perpendicular to the streamlines 7 = const 



274 C .  &. Lin and S. F. Shen 

everywhere. It is also temporarily assumed that the correction to the one-dimensional 
shock shape is of higher order, i.e. a(S) = o(S2). It will be proved later in (68) that  
a(&) = S3. Then the inner coordinate 9 is defined by 

k- = k-s(r)+S5' ~ o + + 9 - ~ z ~ o f ; ( r 2 - 1 ) + a ( ~ ) h ( r ) ,  (46) 

with = 0 corresponding to  the shock position. 
It is known that the shock conditions require 

\ v,, = V,,, = v,, 

where Vn and V, are the normal and tangential velocity components respectively. The 
leading terms of (17) for the outer solution behind the shock (i.e. 42l N ui, 42 - 0, 
p - r i  and p - p i )  are the one-dimensional solution and are taken as the basis for 
the inner solution, since it is easy to  show that the shock conditions can be satisfied 
for the leading terms of the solution by proper choice of integration constants in the 
solution. 

It can also be shown from the shock conditions (47) that  the correction terms to 
the one-dimensional solution should be 0(J2) for the pressure, density and the velocity 
component normal to the shock. Let us now analyse the relationship between the 
normal and tangential velocity components and @ j ,  q. (j = 1,2) where (and in what 
follows) the overbars are used to denote the corresponding quantities for the inner 
variables. It is known that the velocity vector 4V can be expressed as 

9 = @ g j  = f+$, (48) 

where 

and X' = 5', x2 = 7. 

Noting that ZZ = g12e l+g2zez ,  

we have 

(49) 

Taking = 0 in (50) for the shock position, we see that,  according to the physical 
meaning of and ti$, the first term on the right-hand side of (50) is just the normal 
velocity component, and the second term the tangential velocity -component. It can 
be shown that I el I = O(S) and q1l = O(Sz). Therefore i t  is concluded from (50) that 
a correction term O(S2) for the normal velocity component requires a correction term 
O(S) in el, which accompanies a same-order term in gZ generally required by the 
governing equations of elliptic type for the inner solution. Thus the asymptotic 
expansions.for the inner solution behind the shock are assumed to be 

1 
S @l - - {ui* + sui:, E? + SyM; 5 ' 2  f o f ; ( T / z -  1 )  + U2(5', 7)3 

3 h0"' 3 - 1 0" +S [6 o* 9 2uo*fof;5'(r2-1)+ U3(5',11)I+a('Ru&h), (51a) 
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4F2 - SV,(%, r)+f32V3(4?, 713 

P - ~ ~ * + ~ ~ ~ ; 4 ? ~ ~ [ ~ ; ~ 2 - ~ ~ ; f o f ~ ( r 1 2 - 1 ) + ~ , ( ~ , r ) l  

P - P~*+6P:;51+62[~:;51,-~:;f0fI,(y2- 1)+P2(514)l 

(51 b) 

+63[~~’51513-9:;fOf~51(y2- 1)+R3(t?,7)1+c@) G h ,  ( 5 1 ~ )  

+ ~ 3 3 [ ~ : ~ $ a - ~ ~ ; f o f I , 5 1 ( y 2 -  1)+P3(P, y)I+c(6)p&h,  ( 5 1 4  

where U&?, y), F(P, q ) ,  R@, r ) ,  q(e, y) (j = 2,3) are the expansion functions to be 
determined for the inner solution, and subscript * denotes values at 5 = 5,. 

The governing equations for the correction terms 0 ( S 2 )  are found to be 

uz, p + vz, 7/ +fo u:: R2, g = 0, 

u:: R2,ci-Wo P2.ci = 0, 

where Wo = r:* u:$/yp:,. Equations (52) can be derived from a set of equations similar 
to (13)-(16) with streamwise coordinate 51 instead of 5. This is a non-homogeneous 
set of equations for U,, V,, R, and P,, and the boundary conditions on the walls are 

V*(4?, * 1) = 0. (53) 

The non-homogeneous part of the solution for (52) is simply U,  = V, = R, = 0, 
P, = -t(u:f’); y2, and the general solution for the homogeneous part can be obtained 
by the method of separation of variables. Therefore the general solution for (52) can 
be written as 

where I 
W 

H({, y) = X en cos nlty , 

K({ ,  y) = 2 en e-”@ sinnxy. 

n-0 

W 

n-i 

(55) 

Fl(y) and F2(y) in (54) are arbitrary functions to be determined by the shock 
conditions, so are the arbitrary constants en (n = 0, 1,2, ...) in (55). Now we can use 
the shock conditions (47) to determine those functions and constants, and also the 
constants C,  and C, in (20). The solution in front of the shock has been given in §2. 
Substituting 6 = f ,  given by (45) into the solution, we can obtain the velocity 
components, density and pressure immediately before the shock. Note that the 
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normal velocity component corresponding to the first term on the right-hand side 
of (50). In this way, we obtain 

\ v,, = o(62), 

vn, -uo* { l + s a [ ( ~ + ~ f 0 f ; ~ ) + ~ f o f ~ y ~ ] } ,  UO* UO* 

PI ~ r o * { l + ~ 2 [ ( ~ * + + f o f 6 ~ j + ( - - 2 f o f ; ~ j y 2 ] } ,  T22* 1 

p ,  - p o * { 1 + 6 [ ( ~ * + + f o f ; ~ ~ + ( ~ * - t f o  Po * .Po* Po* f : A j y ' ] } .  Po* I 

TO * o* To* TO * 
' (56) 

A similar procedure can be applied for the variables immediately behind the shock 
to obtain 

The factors before the curly brackets in (56) and (57) are obviously the one- 
dimensional velocities, densities and pressures immediately upstream and downstream 
of the shock. It is easy to show that the shock conditions (47) for the leading terms 
in (56) and (57) can be satisfied by choosing 

for u&, rg* and p& in (20). For the 0(d2) terms in (56) and (57), the shock conditions 
(47) also show that H(0,y) must be of the form 

CQ 

H(0,y) = X en cos nxy = a3 +p3 y2, 
n-o 

(59) 

with constants a3 and p3 satisfying 

where 8Y Y-1 Y-1 
kP = - (Y+1I2 u:*/[(u:*-m) (1--u:*)]. Y+l 

Similarly, Fl(y) and F2(y) must be of the form 

q(7)  = a;r+pjy2 (j = 1,219 
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with constants aj, Pj (j = 1,2) satisfying 

Equations (60), (63) and (64) are used to determine the constants aj,  P, (j = 1,2,3). 
Specifically, if the one-dimensional flow relations and shock conditions are used for 
the second relation of (60), it  can be shown that 

Y 4 

Y+1 Y+l 
- (1 +- u:,-u;*) 

(4*-%) (l--y+l4*) 
1 0  fON. 

Y-1 
P s =  ' 

Note that only the terms of e,, (n  =I= 0) in (55) contain the inner coordinate 5' in 
the solution of (54), and represent the relatively rapid varying of the variables in the 
streamwise direction. If p3 = 0, we have eo = a3 and en = 0 for n =I= 0 from (59). In 
this case it can be shown that the inner expansions of (51 u 4 )  are identically the inner 
limits of the outer expansions. In other words, the inner solution disappears. It is 
expected that P3 = 0 is equivalent to condition (43), with u: replaced by uo* for 
slender-nozzle flows. 

Finally, the function a(&) h(7) is determined by the equality of the tangential 
velocity components on both sides of the shock. According to (50), this condition is 
equivalent to the equality of e2 immediately upstream and downstream of the shock. 
Using the transformation 

4F2 = gI2 @I+ g2, w, (66) 

it is found that g2, I - 6'u0, h', 

@2,II - u:* h' + a"f; V!(O, 7). 

(r(6) = 63 

Thus the shock condition requires 

(67) 

and (uo* -G*) h'h) = f: V2C037). (69) 

Equation (69) is the ordinary differential equation for h(7). Note that the solution 
for en from (59) is 

and 

4( - l ) n  
en = - P 3  (n  = 1,273, ... ), n2n2 
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Substitution of (71) ihto (54) and letting e = 0 yield 

C .  Q. Lin and S. F. Shen 

Then, on substitution of (72) into (69) and integration with respect to 7, we have 

where h( 1 )  = 0 is chosen to determine the constant of integration, which means 6 = 6, 
is assumed to be the shock position on the wall (see (45)). 

It is also important to include one more term in each of U,, V,, R,, P, in (51u-d) 
to improve the accuracy of the solution, and one more term is also added to (45) as 

E s  - Eo--2:f0f;(72- 1) +-33h(7)+-4k(7). (74) 

The deduction is simple in principle, but the process is tedious. Only the results are 
given in Appendix B for brevity. 

6. Matching procedure and the composite solution 
So far the constant C,  and the functions g1(7) and g2(7) introduced in the outer 

solution have yet to be determined, and we can do this by considering the matching 
between the inner and the outer solutions behind the shock. 

First consider the matching of the pressure fields. As the outer expansion of the 
inner solution, the terms in H(Y, 7) of (55) are all the transcendentally small terms, 
except for the leading term e,. Therefore the outer expansion of the inner solution 
for pressure p can be written as 

(75) 

On the other hand, the inner expansion of the outer solution for pressure can be 

P - P:* + SP:; 5i + ~ 2 [ k P : ;  e2 - ip:; fo fh2 - 1)  - 3u: f’L y2 + P& eel- 

derived from (17),  (25) and (29) as 

P P : * + - P : ; 5 i + ~ 2 [ i P : ~ e 2 - - P : ; f o f ~ ( 7 2 -  1)+PL*-:(U:f’)l*721, 

where 

Then the Van Dyke matching principle requires that 

P&* = P:* eo. 

gz(7) = %+b,72, 

Similarly, the matching of the density fields requires that 

with constants a2 and b, satisfying 

a2 b, PL* p2 = -+- 
Y Y P:*Y’ 

a2 = -, 

and the matching of velocity fields requires that 

Sl(7) = a1 + bl r2 
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with constants a, and b, satisfying 

Thus we can evaluate a, and b, from (80), then a, and b, from (82), and finally C3 

The additive rule is used to construct the composite solution. If the superscript 
from (77) and (78). 

c is used to denote composite solutions, we have 

4/33 %* O0 ( - a r c  - u:+s2 u;-- e-flffglpo fo cos nn7 , 1 [ x 2 M I = n p  Y 0 fl-1 

7. Illustrative examples and discussion 
Figure 3(a)  shows the shapes of the shock for five different streamwise shock 

locations in a hyperbolic nozzle of f(z) = (1  +z2)i and 6 = (0.1); in (1).  In  this case 
the radius of curvature at the throat R, = &l, the half-throat height Ho = S and the 
ratio of the two Ro/Ho = 6, = 10. In  the present theory the truncation error is O ( P ) ,  
and hence O(O.01) in the example. The middle case is for to = 0.83495, corresponding 
to the case without inner solution. Note that in figure 3 (a) the half-throat height Ho 
is taken as the unit of length. The shape is evaluated from (74). The second term on 
the right-hand side of (74) is a parabola perpendicular to the nozzle wall. This means 
that the dominant term for the shock shape corresponds to a curve convex to the 
downstream direction for the hyperbolic nozzle. However, figure 3 (a) shows that, for 
the shock position near the throat, the shock shape shows a reversal of curvature in 
the transverse direction (as earlier pointed out in Messiter & Adamson (1975) and 
shown graphically in Lin & Shen (1982)). A more physical explanation is as follows. 
For a transonic shock with 5, = O(S), we have f; = O(6) and 

-syfof;(72-i) = 0 ( ~ 3 ) ,  (84) 

Also, i t  can be shown that uo*-u& = O(6) and & =  O(6) for transonic shock. Thus 
from (73) we have h(7) = O(&i) and 

S33h(7) = O(&), (85) 

which plays a more important part in (74) than the term given by (84). Noting that 
the half-width at  the throat is Ho = Sf(0) = 6, it turns out that ~ 3 ~ h ( 7 ) / H ,  = O(d),  
which is of the same order as the term z'(y; E) given by equation (53) of Messiter 
& Adamson (1975), or the term ~ ~ g y ( 7 )  given by equation (33) of Lin & Shen (1982) .  
In fact it  can be shown for the transonic limit that 
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FIGURE 3. (a) Shock shapes in a hyperbolic nozzle. ( b )  Velocity 
distribution on axis. (c) Velocity distribution on wall. 
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if we take to = 6x0. It is easy to show that the above expression is quantitatively the 
same as d(y; E) given by Messiter t Adamson (1975). 

Obviously, the shock location in the nozzle is determined by the upstream and 
downstream conditions of the flow. The appropriate shock location produces an 
entropy jump across the shock and corresponding flow parameters which are 
compatible with those conditions. As the normal velocity component V,, immediately 
in front of the shock can be estimated as 

and the tangential velocity component V, can be estimated as O ( P ) ,  the entropy jump 
across the shock can be evaluated as 

where s is the entropy and R is the gas constant. The asymptotic expansion of (87) 
can be obtained by substitution of (86) into (87). If the shock strength is not weak, 
i.e. eo = O(1) and uo*- 1 = O(1), we canestimate that the leading term of (87) is O(1) 
and is constant along the shock, and the second term is 0 ( S 2 )  and is variable along 
the shock. Therefore the present theory evaluates the vorticity of order behind the 
shock. However, if the shock strength is weak, i.e. 6, = O(S)  and uo*- 1 = O(S), the 
present theory agrees with that of Messiter t Adamson (1975) or Lin t Shen (1982), 
with the entropy jump across the shock being O ( P )  and the vorticity behind the shock 

Figures 3 (b ,  c) show the velocity distributions on the nozzle axis and the wall given 
by (83u) due to the different shock positions. The isentropic one-dimensional 
velocities for both subsonic and supersonic flows are also given by the dotted lines. 
The different velocity distributions behind the shock due to the different entropy 
jumps are clearly seen. Also, for the case with the leftmost shock position, the 
influence of the inner solution on the velocity distribution can be seen. In  this case 
uo* < uo*, cr and the velocity immediately behind the shock is higher near the axis, 
and lower on the wall, than that required by the smooth-flow solution. The inner 
solution thus provides locally the necessary adjustment. However, as shown from the 
figures, this effect of the inner solution becomes less prominent as the shock position 
moves downstream. To understand this feature, we recall that the thickness of inner 
solution is of order /lo 6, because the rapid change of the flow parameters of the inner 
solution is manifested by the factor x g / p o f o  in the exponential functions in (83u-d). 
As the shock position moves towards the throat, the shock strength is weaker, Po is 
smaller, and the inner solution provides a steeper velocity gradient, and hence 
stronger influence on the velocity distribution. In contrast, as the shock position 
moves downstream, the inner region becomes thicker because /lo increases to order 1,  
and the influence of the inner solution becomes less noticeable. Incidentally, in the 
present example, the value of 6 is ( O . l ) i  = 0.3162, which is not too small compared 
with 1, and the velocity distributions due to the outer solution essentially prevail. 

Figure 4 illustrates qualitatively the phenomenon of inviscid shock-induced 
separation. The nozzle wall is described by 

O(W 

h = S(3.2-1.5 epzP), 
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FIGURE 4. (a )  Nozzle geometry and the shock shape. ( b )  Velocity 
distribution along the axis and the wall. 

with S = 0.18257. The one-dimensional velocity a t  the throat is assumed to  be 
supersonic, and a shock is formed near the throat with go = 0. The streamline along 
the wall has the strongest shock strength and the largest entropy jump. As the flow 
behind the shock is decelerated downstream, the flow near the wall loses all its kinetic 
energy at some separation point S, whereas the rest of the flow still goes forward. 
The truncated error is of order 0.001 for this example. The one-dimensional velocity 
distributions for both subsonic and supersonic flows are also shown by the dotted lines 
in figure 4 for comparison. 

While illuminating, the result may not be quantitatively correct, a t  least for the 
following two reasons. First, the velocity approaches zero a t  the vicinity of the 
separation point, and the governing equations become singular there. For instance, 
we can see from (27) that, as u: approaches zero, the first two terms on the right-hand 
side are no longer of order 1.  Secondly, the smooth-flow assumption is obviously not 
valid with separation. As in viscous boundary layers, the separation region cannot 
be analysed without further information concerning the total energy and entropy of 
the reverse flow inside that region. Further analysis of this phenomenon has not been 
attempted. 
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8. Conclusion 
Previous research applying the asymptotic-expansion method to transonic flows 

with shock in slender nozzles is extended to handle a wider speed range from low 
subsonic to supersonic flows with proper account of the vorticity behind the shock. 
The small parameter describing the slenderness of the nozzle in (1) is used as an 
expansion quantity. For the flow in front of the shock, as well as the flow further 
downstream of the shock, a coordinate scale is chosen such that the governing 
equations are reduced to the parabolic type, irrespective of its original type, which 
is elliptic or hyperbolic depending on the flow speed. The solution for the flow in front 
of the shock is expanded in ascending even powers of S, whereas the solution for the 
flow further downstream of the shock also contains terms of odd powers of 6 beginning 
with O(S3) and required by the matching with the inner solution immediately behind 
the shock. According to such an expansion, the flow exact to the order of 62 is so 
smooth that the streamlines are all affinely similar to the nozzle wall, and the 
transverse pressure gradient is determined by the local nozzle shape given by (35). 

For the flow immediately behind the shock, however, the transverse pressure 
gradient is determined by the shock conditions rather than the local nozzle shape, 
and an inner solution is generally necessary there to act as a transition region for 
the pressure distributions to change from one type to the other. The coordinate 
scaling for the inner region is so chosen that the governing equations retain their 
original elliptic type. The well-known singularity of the flow just behind the shock 
point a t  the wall is related to the inner solution. Meanwhile, a critical shock location 
at which the inner solution disappears is found, and the transverse pressure gradient 
required by the local nozzle shape is coincident with that required by the shock 
conditions in this cwe. 

A numerical example qualitatively shows evidence of the phenomenon of inviscid 
shock-induced separation: the flow may separate from the wall owing to the 
combination of larger entropy jump across the shock and sustained deceleration. Like 
a viscous boundary layer, the loss of mechanical energy near the wall is the key 
mechanism, except that entropy instead of friction is responsible. 

Appendix A. Terms O ( P )  in (17) for the outer solution behind the shock 
Governing equations of order S3 can be derived as 

If($ u: + u: G)1,.5+fr; $,q = 0, 

f’ 
f 

(A 1)  

(A 2) $ u; u;,~+ u:’(e u: + u; r t )  = -p:, + - ~ p t ,  ,,, 

P:*q = 0, (A 3) 

Equations (A 3), (A 4), (A 2) and (A 1) can be solved in turn to obtain 

P t  = f3(5), 

10 F L M  157 
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where f&), g3(v) and g4(7) are arbitrary functions introduced after integration and 
yet to be determined. 

Applying the boundary condition (18) to (A 8) yields 

or, after integration with respect to E,  

Then the integration constant C, and the functions g3(7) and g4(7) can be determined 
by a matching requirement between the inner and the outer solutions behind the 
shock similar to that in $6. The results are 

94(v) = YG,(7)7 (A 10) 

where the functions Gl(7), G2(7) and the constant ho are given by (B 28), (B 29) and 
(B 30) of Appendix B. Equations (A 10)-(A 12) can be used to determine g4(7), g3(7) 
and C, successively. 

Appendix B. Solution for the functions U,, V,, R, and P3 in the expansions 
(51 aH51 a) for the inner solution behind the shock 

The linear governing equations for U3, V,, R, and P3 are similar to (52), with the 
same coefficients for the homogeneous part but rather lengthy expressions for the 
non-homogeneous part. Only the results are given below for brevity. They are 

u, = ~ ~ l , + ~ 1 2 7 2 ~ 5 ' + ~ ~ 1 - f o ~ 2 ~ 5 ' f l l ~ S ~ 7 ~  
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where 
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sin n q ,  
00 

T ~ ( ~ , T )  = E b, 
n-1 

m 

7 2 ( C ,  7 )  = X nbn e-nnc sin m y ,  
n-1 

with 
4( - l ) ,  

b, = 6, b ,  = - ( n =  1 ,2 ,3  ,... ). 
n2n2 

The terms containing G1(v) ,  G2(q) ,  M ( [ ,  v )  and N ( [ ,  4 )  in ( B  1)-(B 4) are the general 
solution due to the homogeneous part of the governing equations, with M ( [ , T )  and 
N ( [ ,  y) being of the form 

( B  25) I 
m 

M ( [ ,  y) = X h, ecnnc cos nxy, 

N ( [ , T )  = X h, e-,@ s innq .  

n-0 

m 

n-i 

The arbitrary functions G1(q) ,  G,(T)  and the arbitrary constants h, (n  = 0 ,  1 ,2 ,  ...) 
can be determined by the shock conditions. If we define 

with 

m 
w(y) = vo+ E v, cosnmj 

n-i 

we have 

oh)}, (B 29) 

h, = P O  P 3  f 0  ug* (PA + k, u'* p g ; ) v n  ( n = 0 , 1 , 2  ,... ). ( B 3 0 )  
nY%(uo*--:*) Po* uo* P:* 

Also, the function k(y) in the shock-shape equation (74) can be found as 

k(7) = ifofi(fof," + 3fL2) (r4 - 1) - i , f O f i ( f o f  i +fi2) (r2 - 1 )  
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